
Introduction to Magma

Dec 10, 2019

2

https://docs.google.com/file/d/1d7wIxvDPlB7brh_E4U2bgCVgvYQL8Ssc/preview

The problem of bringing the next billion
onto a faster internet is a problem of

heterogeniety
Heterogeneity in access, backhaul, scale and business models

1. Encapsulation of state and the fabric
2. State in control planes
3. Software release and fault domains

4

Why Magma? Why Facebook?

Design Principles

Access
Gateway

5

Magma Architecture

Access Edge

Access
Gateway

Packet Core

SGW PGW

AAAMME

Orchestrator

Public/Private Cloud

HSS

Gx, Gy

S6a

OCS

PCRFGx

Gy

S6a

DRA
Federation
Gateway

Internet

MNO legacy Core

6

Encapsulation and the Fabric

Each middlebox has state and policy associated with
workloads

● State needs to be in sync across services (config
+ runtime)

● Policy needs to be enforced at high packet rates
● Independently solved scaleout + high availability
● Hard to adapt to dynamic workloads (tasks/VMs

lifecycle/moving)

Traditional datacenters: State throughout the network

Modularize the network: Fabric
responsible for moving packets faster.
Distributed edge responsible for rich
policy enforcement and state

Modern datacenters: Fabric and policy rich edge

X X
XX

SGW/PGW are chokepoint
devices

Today’s GSM/LTE architecture

UE state exists in all nodes
● No clear device abstractions
● Air interface specifics leak through the network

Encapsulation in traditional LTE networks

● Encapsulate the UE state
○ Config maintained in a central location
○ Runtime encapsulated at the edge

● Distribute policy enforcement point
○ Let the ideal topology decide the policy enforcement point

● Keep core network simple
○ Allows for easy scale up/down
○ Cheap: Core network only needs to move packets fast

● Abstract away radio specific technology
● Focus on operationalizing the network

Mobility is complicated but solved in the datacenter (IP is both identity and location)

12

Why Magma? Why Facebook?

Magma takeaway: Encapsulation and the fabric

State in the control plane

Magma takeaway 2: State in control plane

● Desired state model: Centralized through APIs
○ User inputs intent, control plane enforces it

● Control logic completely decoupled from datapath
○ Programmable APIs exposed by datapath
○ Independent evolution of control + datapath

● Use modern distributed systems to propagate state
○ HTTP2, Protobuf, K/V store

Why Magma? Why Facebook?

Software release
The need for fault domains

SGW/PGW are chokepoint
devices

Software delivery: Too big to fail

Software delivery: Fault domain

Design for localized fault domains
● Small upgrade domains

○ Each node is independently upgradable
○ Gradual rollout is baked into the platform

● Control plane independent from dataplane operations
○ Existing traffic not affected by control plane outage

18

Why Magma? Why Facebook?

Magma takeaway 3: Software upgrades

● Flexibility: Modularize the network into a fast fabric and a policy rich edge
● Scalability: Encapsulate UE state and use proven distribution techniques
● Any spectrum (4G/wifi/5G): Localize air interface specifics to the edge
● Programmability: Desired state store model with a centralized controller
● Agility: Design for upgrades by minimizing fault domains

19

Why Magma? Why Facebook?

Summarizing: Solving for heterogeneity

● MSS clamping: Many phones don’t respect MTU settings
● Routing support: Add support for route action:

○ Action managed by local agent or controller
○ Also add support for route advertisement.

● GTP support in kernel
● IPFIX extension: Add support for custom fields

20

Why Magma? Why Facebook?

Ovs collaboration oppurtunities

Thank You

